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ABSTRACT

A summary of the general theory of nonlinear differertial squations
of first order is given, with the aim of providing practical working rules
for the analysis of technical problems, without pratense to rigor and com-
pletenecs, In gsneral, only equations of first order are ccnsidered hers.
After a discussion of the existing conditions and the analysis of singular
points and of the integral solutions of the faw types of equations which can

bs integrated in closed form, principal analytical and graphical procedures
for the approximation of the soluticne are described.
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INTRODUCTION

The analysis of the d-c responss of single energy nonlinear circuits
waes presented in a previous report.® It was shown that rigorous solutinons in
closed form could be obtained, and it was cutlined that in tuis case severai
concepts and characteristics derived froam linsar analysis do not apply.

It is nov proposed o extend the analysis to the a-c response of the
sams circuits. 7This, however, requires the application of spescial technigues
of nonlinear analysis and resents difficulties of much higher order than the
opes previously met. In gensral, nc rigorous solutioms in closed form can be
obtained and one has to make recourse to spproximation msthods., TFor ihis
reason, before procseding to ths snalysis of the a-c response, which will be
presented in a future report, it is convenient %o suwmarise briefly the prin-
cipai msthods of analysis of linear and norlinesr differential eguetions which
describe the behavior of single energy systems. The following notes, which are
mainly limited to differential equitions of first ordsr, are only intended to
give working rules t¢ the student of nonlinear probiems. The reader interes-
ted in rigorous and complete discussion of the subject is referred to the
various excellent texts on differential equations published.®™®

I. Gensral Characteristics of Differential Bquations of Pirst Order: Exist-
ance of Solutions, Regular and Singular Foints

A group of functions repressnted analytically by an exprassion of
type
F (x,y,¢) =0 (1)
where ¢ is a variable paramester, is said to ccnstitute a "family™, The charac-

teristic relationship of the functions of the family 15 an equation obtsined
by elimination of the parameter c between (1) and its derivative

kY 4 ¥ 4
xt & - O @)
* Report R-271-52, PIB-210. This is the second of a series of reports
on the anzlysis of nonlinsar ¢ircuits, bassd on the material of the
Oraduate Courss "Nonlirear Analysis" offered by Dr. E. Y¥eber &% the
Polytechnic Institute of Rrooklyn,
=

See for instance: X, Picard, Traite' d'analyse, Gavthier-Villars
(1905): H. Poincers’, ies méthodes nouvelles de la mechanique célsste,
B, Nasmarion, Paris (i908); . Goursat, Differential equations (Bng.
Trans.) Boston (1917); B. L. Ince, (rdinary differential equations,
Dover Publ, New York (1927); L. Biebarbach, Differentialgleichungen,
Dover Publ, (1930); G. Sansone, Equasioni differensiali nel campo reals,
Zanichelli, Italy (1940).
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Such relationship of type

‘b(stsp) = 0 (3)

vwhere p = dy/dx, is called a differential equation of first order. Similarly,
a family of functions with two variable independent parameters is represented
by a differsntial equation of sacond order. Therefors, in generai, the order
of the differential equaticn is equal to the number of arbitiary parameters
upon which the family of functions depend, provided that these parameters are
not mutually interdependent.

The reverse process of finding the various functions of the family
irom their differential equation is usually very difficuvlt. 1In addition, it
is clear that the differential equation may possess other integrals bssides
those represented by the family from which it has been derived.

For example, the circles in a plsne form a three-dimensional family
of equation
2+ y2 + 2x+ 2By +C=0 (k)
Differentiating three times and elirdnating A, B, and C, one has
1 l2 l't2
¥y (+y )-3yy =0

This differential equation is satisfied not only by Eq. (L), but also by the
equation of any straight line in the plane, since

Yy =y = 0
is a solution.

In the following we shall investigate the problem of the existence
of solutiors in a certain domain D(x,y) {such a domain is four-dimensional if
x and y sre considered complex variables), the characteristics of various types
of singular points, and the methods of solution of the differential Eq. (3)
with closed form or with approximate or numerical expressions.

Regular and Singular Points

Given a differential equation of type (3) and a domain D(x,y) one
is confronted with the problems of investigating a) the existanca of solu-
tions of (3) at each point of D, b) the nature of such solutions, i.e. whether
or not ithey all belong to a family of type (1), and ¢) the characteristics of
singular points of D(x,y).

Let us assume that Eq. (3) can be solved for p = dy/dx and that, for
any initial pair (xo,y,) in D, there exists one and only one root

4
-
]

5

.



p -~ f(x,7) (s>

which reduces to po when 7 = x4,y = Yo. For greater generality we shall con-
sider x and y as cozplea variables. Cauchy proved the following existence
theorem. If, within a circle |x-x.!<h, f{(x,y) i3 analytic in x exd in y,
then Bqg. (S) possesses a uniqus solution ¥ = y(x) which is analytic within
the circls and reduces to yo whan x = xg. 1n the case of real varisbles,
Lipschits simplified the proof of Cauchy, showing that the existing conditions
reduce to a) the continuity of f(x,y) within the rectangula> domain

Ix - = l<n v - 7,i=®

where h<b/X and M is the upper bound of [f(x,y)| in the domain, snd b) the
sxistence of a positive number k, such thal

] L §
If(x,y ) = £(x,7)| <kly -7l
vhere Yy and y' are any two numbers of the rectangular domain.

The previous existence theorem is noi appiicadble if Eq. (3} possessas
a multiple p root for x = x5, ¥ = Yo. In this case, Bq. (3) is equivalent %o
a differsxztial squations (where m is the order of multiplicity in p) and, in
general, possesses 2 integrals at x,yo called singular integrals. Such a
sivuation arises at points on the envelops of the family of integral curves
(1), at multiple points of any integral curve (1) whers two branchss of the
sams curve tonch, and at tsc points whers two nonconsecutive curves (1) touch.
The totality of loci for vhich at lsast two values of p are equal is obiained
eliminating p between (3) and the equation d&/dp = 0. If R(x,y) = O is the
equation 30 obtained, this, in general, will not satisfy the given differen-
tial equation and, for this reason, will not be ons of its integralis. In such
case, R(x,y) = O is the locus of the amltiple points or the locus of the tac
points of the actual intsgral curves. If R(7,y) = O satisfies Eq. (3), then
it repressnts the envelops of the faxily of integral curves.

To illustrate graphically this result, one can consider ths family
of isoclinals obiained from Eq. (3) by letting p = const. = k. A general
survey of the integral solutions of Eq. (3) is obtained by sketching such a
fanily as a function of the perameter k. If the coordinate plane (x,y) is

K +dK

—~INTEGRAL CURVE

Pig. 1 - Bavelope (E) of the family of isoclinal curves sad locus of cusps.
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covered with enough curves; it is possibie to sketch integral curves starting
at any initial peint (xo,yo) and proceeding in steps from (x,y) to x+dx,y*+dy
in the direction of the isoclinal pasaing through {x,7). In Fig. 1 is repre-
sented the envelope E of isoclinal curves and indicated that it is the locus
of cusps of the integral curves. As a matter of fact, in gensral, the iso-
clinal curves have a slope different than the values of k for which they are
defined. There follows that, in general, integral curves cross tne isoclinal
curves. However, at the envelope E, which also has a slope different than p,
the integral curves cannot cross since there are no contiguous isoclinal curves
on the other side of the envelope. Consequently, the integral curves have a
cusp or a stop point on the envelops,

Ths equation R(x,y) = O can also include a locus of double points of
the isoclineal family. The case is indicated in Fig. 2 where it appears that
the corresponding curve ia the locus oI tac points of the integral curves. As

INTEGRAL CURVE

Fig. 2 - Tac locus (F) of integral curves, and locus of nodes of isoclinal
curves.

a matter of fact;, for each point of the curve F there are two possible direc-
tions of the corresponding integral curves, and thersfore F is the lccus of
tangenc; where 2 nonconsecutive curvas touch.

In order to find the locus of multiple points of the isoclinals, it
18 necessary and sufficient that the slope of the isoclinals, defined by

3—2 L3 '-bai g - O :‘ 'l

Jx )y dx :

is satisfied by two different values of dy/dx if ‘
. . ki

)‘—g w 0 .Jj = 0 '

- ’ L  § -\.

Jx )y i

'\t

Finslly, let us consider (x,y) pairs for which Eq. (3) does possess
. a unique root p, but the existence conditions are not satisfied. Such pairs :

are called singular point.s of the equation and, in general, are isolated. { !
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They play an important part in characterizing the behavior of the various
integral curves in their vicinity because they ere themselves singular points

of “the solutions , 1.e.;, points at which the solutions are discontinuous, not
unique, or not existent.

Let us assume that in Eq. (5), £(x,y) is a rational function of y,

T - f(xy) - Hzx) (6)
dx UAx,y)

i-e.,

vwhere P(x,y), Q(x,y) are polynomials in x,y with no common polynomial divisor

Hx,y) = Py(x) + yPy(x) + YPyx) + oou ¢ YRL(x)

Ax,7) = Qx) + yQ(x) + Yzﬁz(x) + oo +37Q ()

The singularities of (6) are discrete and may be separated into two fundamental
classss, the fixed or intrinsic and the movable or parametric singularities.
The first ones arise at points x, where a) any of the coefficients B or Q has
a singularity which cannot b. removed by multiplying P{x,y) and Q{(x,y) times
an appropriate function of x; b) Q(x,y) is identically sero; and ¢) Q(x,y)=0,
P(x3,y) = O are satisfied simultaneocusly by a particular value of y.

The intrinsic singularities ars connected with only some of the
functions F(x,y,c) = O and arise in correspondence of values x] where such
functions have a multiple point. For this reason, they deupend upon the value
of ¢, 1.e., upon the initial conditions. Paramei:ric singularities are found

only in nonlinear differential equatisns; they can coexist with intrinsie
singularities.

For example, the sclution of the differential squation
yt -
with y(0) = y, is ‘
Yy =7,/(1-xy,)
This integral has a pole at x = 1/y,.

It may be shown that an squation of the first order and second de-
gres of the Riccati type

gz - po(x) + yPl(x} + y2P2(x) (7

3 dbas

!
!

i"
sl
1
- ¥
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cannot possess multiple point singularities. There foliows that linear equa-
ticns of first order and nonlinear Riccati equastions possess solutions which
ure rational functions of the initial value yo, i.e.,

5, A=) + B(x)

¥, C(x) + D(x)

A Riccati equation can be converted into a linear homogeneous equation of
second order with the substitution

uI

y S S
o u Pa(x)

One obtains from (7)

2
P, (x) :—;‘} - [P'(x) + Py () Pa(x)] %-‘; + P (x) P(x)u = 0

and the solution of this differential squation is, in general, of type
u = clul(x) » cauz(x).

It may be ahotm’ that the movable singular points of an equation of
type (6) can only be poles or algebraic critical points.

Classification of Intrinsic Singxhr Points

We shall now examine the methods for the determination of the charac-
teristics of the intrinsic singular points of Eq. (6), and, in particular,
those which are common zsros of P(x,y) and Q(x,y), but are not stationary

points of either function. If (x],y;) is one such pair, expanding P(x,y) and
QAx,y) in its vicinity by Taylor series

e (x,5) =¥(x; ¥;) +[(x~x1) € (xyyy) + (3-77) f}(xlyl)} +

52
n
(%]

[ e mm) + 2xn) o gtmymy) + (!-11)21;;(x1y1%

+ eoee

one can write Eq. (5) as follows:

* Painlevé - E'quationa différentielies ordinaires. Encycl. des Sciences math.
t. 2, v.3, 1910,

———

S Wy
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g &(x-xl) + b(y":l’l) + Pl(!,Y)
dx ¢(x-x)) + d{y-y;) + Q(x,¥)

(8)

InEq. (8), a= (D) ,15-@) ,c-@ ,a-@H , mdrxy),
T X7y yan ¥x 5y ¥y oy

ﬁl(x,Y) are polynomials in (x-x.l), (y—yl) of degree not less than two. If the

differences (x-xl),(y-yl) are made to approach zero along soms arbitrary curve

in (x,y), Pl(x,y) and Ql(x,Y) will vanish to an order higher than the first so

that, in a region sufficiently small surrounding (xlyl), Eq. (8) may be written

approximately

d = a(x-x,) + b(y-y,)

(9)
dx  c(x-x)) + d(y-y;)

Eq. (9) is homogeneous in (x-x3), (y-y]) and, by means of the substitution
yn- :(x-zl), may be reduced to one whose variables are separable. FKeglect-
ing the case ad - bc = 0 for which equation (9) becomes p = const., it is
found that the characieristic of the singularity (x;y;) depends upon the nature
of the roots 37, g2 of the algebraic equation

32 « (b+c) £ = (ad=-bc) = O

i.s., upon the discriminant 3 = (b-c)2 + L4 ad. If 3<0, (x3y7) is a limit
point (focus) of the iniegral curvss which ars spiral-like; if 4=0 but

ad - bc<0, (x3yy) is an actual common poiut of the intsgral curves (node);
if A>0 and ad - bc>92, {x35;) is a saddle point.

Pl A>o0

NODE Pi-4q -0

/

A >0 ( A <O

~p—
SADDLE FOCUS

o

'};
L
‘[

e e e

f
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Letting

P = <(béec) = -(:1432), Q = -(ad-bc) = 55

one has
& = P2-lQ

80 that the previous conditions in a P, Q plane correspond to the regions out-
lined in Fis. 3.

It is possible to assign an index to the various types of singulari-
tie2. As a matter of fact, if in the (x,y) plane we consider an arbitrary
closed curve C which does not possess any multiple points and surrounds oné
and only one aingulariily, the total number of revolutions N made by thes vector
of components P(x,¥y), GQ(x,y) in & complete circuitsatior of € is +1 if the
singularity is a node or a focus, =1 if it is a saddle point. The number N
is called index of the singularity; if the curve C encloses several singulari-
ties, the value of N is the sum of their indexes. This mumber is sxpressed
mathematically with the relation

el [ gt 37 0 [ ro- ae

2z Te P(xly) 2n T ;2 . g

"4

As a consequence of the previous statements there followz that if ths curve C
is an actual solution of Bq. (9), the corresponding valus of N is +1, so that
the sum of the indexes of the singularities enclosed must add up to +l.

The subject of singularities of a differsntial equation of first
order will be discussed further in & subsequent report, to conzider cases in
which x and y are both functions of a third varisbls, the tims., However, we
shall indicate here briefly the case of singularities of higher order. These
correspond to points (x', y!) which are not only common seros of P(x,y) and
Q(x,y), but also stationsry points for them. For example, the equation

%

4 e e

adwits the general integral
L+c

This consists of a system of cubiecs of which the curve y‘” - x3 hﬁ e cusp at

the origin.
BQ:
.y

e ot = ¢
Wea ROKT % ks

The equiition

Behaie 3
A e

R < <7ty PP
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For an equation of type (£), nscessary and sufficient condition of
integrability is that

P(x,y} dx = Q(x,y) dy = O (11)

be an exact differential, i.e.,

o/
s
o
0

3 |
4+
.
]
©

The solution is then expressed with
x
S¥pax + /YQdy = ¢
X Yo

The condition of integration is alwsys verified when the variables are separ-
able, i.e., P = P(x), Q = Q(y), or vice versa.

If P(x,y); Qx,y) are homogeneous functions of x and y of the same
degree, the separation of variables can be achieved with the substitution
y = 3x which transforms (10) into
[P(1,2) + 2 «1,2)] dx - x Q1,2) dz = 0

More generally, if (11) is not an exact differential, it may be transformed
into one by multiplication with an integrating factor p(x,y), such that

w(Pdx-Qdy) = O

is a total differential. There exists an infinity of integrating factors which

are solutions of the partial differential equation

AUpP) , AW 4

dy dx
ite., .
PR . Qi ., (2R,29 . (12)
dy dx Dy  dx

Tha solution of (12) is in itself a problem more difficult than the solution
of (11), but fortunstely ws only nssd to find a particular integral of (11)
and this, in certain cases, can be found easily. As an example, consider any
linear differential equation of first order

EZ = b 1
™ + Al(x) y 1(1) (13)

In this case we have P = b, - a;y, Q= 1, and Eq. (12) becomes

+ — gt

e
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D). )
( - y) Lﬁ - —E - [
by, ¥y ow 2

A - . ‘iculer Yntegral of this equation is p = u(x) obtained from
i.e.,
ay (x)dx
n(x) = cfl
With the use of this integrating factor, Eq. (13) is transformed into the
sxact differential

dx Ja dx
ejhl (b1 - uly) dx - ¢ "1 dy = 0

whose general integral according to (12) is

-/a.dx Ja dx
Y =¥, " ¢ E C+./'x:(-a1y+b)eal dx

i.e.;

-fa,dx  -fa,dx Sa dx
y=Ce - ocfal /;:bl(x)cal dx

In the case of the nonlinear Bernoullil equation

T ey@yea@y” -0 (1)

E3. (12) becomes
(bly+anf)‘;ﬁ+‘ﬁﬁ+p(al¢ n%yn-l) 0
Ix dx

A particular solution of this equation is not easily found. However, Eq. (1h)
can be transformed into a linear equation by means of the substitution z = yl-n
and bscomes

de =
S L (ln)(azea) = O
i s | %
The Riccati equation

if ¢+ Ay ¢ a, y2 = b (15)

which contains the Bernoullii squation as a particular case, cannot be inte-
grated by a general method. Its solution is simplified, however, if any
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(bl"ly)%}; o B "

¥Ix

A rriicular integral of this equation is p = u{x} obtained from %5 = ua,
i.e.,

With the use of this integrating factor, BEq. (13) is transformed into the
exact differential N
JSa dx Ja,dx

[ (b1 - aly) dx - & dy = O

whose general integral according to (12) is

/o dx - Jedx |
Y-y, = ¢ 1 Co/r(-alyob)ea‘l d.x}
Xo
trees ¥ /i J
= dx = dx dx
y-Ceal ocal ./;:bl(x)eal dx

In the case of the nonlinear Bernoulli equation
:—f +a(x)y+a@y = 0 (1k)

Eq. (12) becomes
(a1y+lnyp)lﬁ+350u(al*n%yn'1)-0
Ix  dx
A particular solution of this equation is not easily found. However, Eq. {1k)

can be transformed into a linear equation by means of the substitution z = yl-n
and becomes

d
ﬁ + (l-n)(ayz + a)) = O

The Riccati equation

% SRR Y AR (15)

which contains the Bernoulli equation as a particular case, cannot be inta-
grated by a general method. Its solution is simplified, however, if any

s B S

P T

- )_._—.:’..'_.-;,-—-;-
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particular integral y* is known. As a matter of fact, letting y = 7 +z ihs
equation is changed into the Bsrnoulll type

9
iz— + (2y’a2+ 81)2‘*8.22‘.’0

Passing now to other possible forms of Eq. (3), a solution can be
obtained at least theoretically when &(x,y,p) is a polynomial of degree n in
pP. As a matter of fact, writing the equation in factorized form

Hx,5,P) = (P-sy) (P-%5) ... (P~4,) = O, (16)

one can show that the general imtegral is the product of the integrals of the
esquations obtained equating to zero each factor of (16).

Other cases of interest are those in which &(x,y,p) can be written
in one of the forms

x = fl(P) (17)
y = £,(p) (18)
y - xf3(p) (19)

The solutions of these equations can be written in closed parametric form in
terms of p. One has respectively

x=1(p), y=c+ /pt'(p) dp (177
y=£,(p), x=c+/Z1yp)ap (181)
p
y= xf3(p), X = ¢ exp /f’_(_g)_d_p (191)
P - f3(p)

Similarly, when &(x,y,p) is linear in x and in y, of type
#x,y,p) = x¥Ap) -y +F(p)

{p) #p, the solution is obtained in parametric form as
x = £,(p)s ¥y = fg(p)

vhers fh(p) is the integral of the iinear equation

e v , . 1)
dp  p-¥(p) p- ¢ (p)
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and fo(p) ~ x€(p) + ¥ (p).
On the other hand, ths roots Py of

p-F(p) = O

satisfy the condition dp/dx = 0O and furnish a number of singular solutions of
type

iy = x\((pi) + I’ (pi)
In certain cases a given differential equation can be transformed

into an integrable form with a substitution of variable. FPor instance, the
transformation of Legendre

x=P, y=XP-Y, p=X
transforms ¥ x,y,p) = C into the equivalent equation

&(P, XP-Y, X) = O

II1. Methods for the Determination c¢f Approximate Integral Solutions

Unfortunately, in the great generality of cases, a rigorous solution
of 2 nenlinear differential equation cannot be found and for this reason it is

necessary to have recourse to methods of approximation. These generally apply
only to a differential equation of type (5)

P = £f(x,y)

and in a domain D in which f(x,y) is analytic in x and y. They provide the
solution as a limit of a sequence of functions, or as sum of an infinite
series, or as a numerical expression.

a) Method of Successive Approximations (Iteration)

If xg5 Yo 1s a point of the domain D, the solution of (5) satisfies
the integral equation

= + £ d 20
y =7, {‘ (€, ¥(§)) dg (20)
where y(f ) is unknown and x is chosen within D. Let us consider the sequence

x
yl"'o*;{ £§, ¥ df
0

.—_,_M_.-—;;.-—.——-—-

PP L S

| -y
LA g P

iy

)
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Yo = Yo+ /T £y di
xo

e o & @

It can be shown that this sequence possesses a limit for n—9oo, and that this
limit is the desired solution of (5). While this procedurs is very general,
the convergence of the sequence obtainea is rather slow. In order to improve
the latter, in special cases modifications can te introduced in the method.
Suppose, for instance, that Eq. (5) is of the form

P = fl(x,y) &2 fz(xey) (21)
where e f2<< fl within the domain D. If a solution of
Pp = fl( st)

can be found, one assumes it as zero approximation and obtains, the first ap-
proximation solving

P ™ rl(xJY) L fg(x’yo)
Similarly, the second approximation is obtained as solution of

Pi= fl(x,y) + ¢ fz(xsyl)

and so on.

Another modification of the method is obtained considering the equa-
tion

dx 1

dy £( X:Y)
which sometimes may be integrated more readily. One has similarly

"'"*fy-"'—{—,—

x\?\a f

(22)

and correspondingly thne approximation sequence is

P e

L3

SR e,

P o
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x2-x+fy df

0o
Vo f(x, §)

b) Method of Integration in Series (Psrturbation)

While with the previous method the solution is expressed as limit
of a sequence, it can also be expressed as sum of a converging infinite series.
In a domain of analyticity of f(x,y) surrounding the initial pair (xo,yo) one
can compute all successive derivetives of y at (x,,y,) by means of the given
differential equation. Therefore, by Taylor series, one has

2
Y=, 45, (xx)) + 3, -5§§ﬂl— ‘e (23)

In practice the camputation of successive derivatives may be rather cumbersoms.
If one accepis ine principie that y can be expresssed a3 a power series, its
coefficients can be obtained by substituting such an expression with indeter-
minate coefficients for the dependent variable in the differential equation.
Since it must make the equation an identity, one can readily obtain recurrence
relations between the coefficients of the power series by comparing terms in-
volving the same power of the variable,

The method of solution in series may be applied also in the neighbor-
hood of some types of singular points of the equation, namely, those in corres-
pondence of which the solution is expressed in the form

7 Gn) o ¢ maexg) ¢ maexg)®e ] @)

with 10750 and r any real number. To investigate the possible existence of
such type of solution, one substitutes the series (24) into the differential
equation and equates to zero the coefficient of the term of lowest degrse in
(x-xo). If this coefficient is independent of r, the expression (2L) cannot
be used to represent the solution in the neighborhood of (xo,yo). Otherwise,
one determines r from this equation and then proceeds to the ewvaluation of

e
211 other coefficisnts.

When the differential Eq. (5) can be written in the form
p = f(x,y) = fl(x:Y) + ¢t fz(x:Y)

with ¢ f2<<fy, it is possible to express the solution with an infinite series
whose terms are not simple powers of the independent variable, but more general
functions of such variable, simultaneously defined in a certain interval of x.
For this purpose, it is observad that in the given domain f(x,y) can be con-
sidered an analytic function not only of the (complex) variables x and y, but




ko
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also of ¢; therefore, the solution cen be expressed in a ssrias of powers of
€y 1€

Y = ¥o(x) + e yy(x) + ¢t Yolx) + ... (25)

Substituting the expression (25) into the differential equation, one obtains

s . 2.
Yo+ 67, * €T, 4oun = fl(§9y°+eyl+..) + ef (X, ¥y +eyy+..)

Now, equating the terms of same degree in &, one obtains a system of recurrence
equations which permit; the determination of the functions yo; ¥y15 ¥2 +-«--
For instance; y, is the solution of the equation

ib L fl(XSY)

This special case of the method of integration by series is known as "perturba-
tion method®™. A close analogy &xists between perturbation and iteration
methods; depsnding upon the particular differential equation, one or the other
may ba more convenient., but in general both become rather cumbersome after the
second or third approximation.

In the appliication of each of the methods previously discussed, it
is necessary to satisfy the given initial or boundary condition. Since the
equations here considered are of the first order, this condition reduces to
one relation, for instance, the initial value y(O). In addition, if it is
known that the equation possesses a periodic solution {in response to an ex-
ternal driving term, or as free solution of a degenerate system), a periodic
condition of the type y(x + 2n) = y(x) must be also satistied. A degenerate
system is one which is represented by a differential equation of second order,
which, on account of the relative smallness of the coefficient of the second
derivetive or of that of the function y (spring constant) reduces actually to
a8 differential equation of first order. A system of the type

& =
= £(y) 0 (26)

possesses a periodic solution if the corresponding path in the plane (dy/dx, y)

fly) A

-

Fig. I - Multivalued Function
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is & clesed curve. This impiies that f(y) must be a multivalued function
(Fig. L) since, for some values of y, f(y) will assume at 1cs3t two different
values on the solution path. Thus, the function f(y) in general will be non-
analytical, includingz radicais or discontinuities.®

By means of the methods of approximation described, the solution is
expressed as an infinite series. In order to satisfy the initial condition
it is sufficient to impose that the first term of such a series assumes the
required initial value and all cther terms assume correspondingiy zero initial
value. In addition, in order to satisfy the periodicity condition, when this
is required, one mist equate to zero all the coefficients of terms in the series,
possessing a periodicity other than the required one.

c) _ Method of Sinusoidal Anaiysis

Whan it is known that the solution presentsz periodic terms of a cer-
tain frequency, one can express y as a Fourier ssriss in x and determine its
coefficients b, direct substitution into the differential equation. By this
procedure, the integral of the nonlinear differential equation i1s obtained
from the solution of a system of eguaticns which are not of differential type,
bul are of algebraic or transcendental type depending upon the nature of the

nonlinearity existing in the original differential equation. For instancs,
given

F . ony - £y, (27)
dt

where it is known thet y is & periodic function of t; one can assume in general

x

y = E . (an sin nwt + bn cos nat) 3
ns=] {

@ .
y' o= }_ (wn a_ cos nwt - wn b_ sin nwt) i
o n n :

There follows that

o)
jiact
@
o
<t
p g
]

@®
21 (fln sin nwt + f?n cos nwt)

w..ere

\a)
]
2 ik

S £(y,t) sin net dat
-1

n
L éuf f(y,t) cos nwt dut
Zn R q

* Andronov, Chaikin - Theory of Oscillations, Princeton Un. Press 1949, p. 138,
Chapter IV.
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Clearly the solution of the equations obtained by identifying coefficients
of isofrequential terms is impossible in the general case. If, however, it
is permitted to essume that only a limited number of harmonics exists, then
the equations may be simplified conveniently to permit the solution for the
values of the various ccsfficlentm of the Fourier series.

In particular one might combine the foregoing procedure with a pro-
cedure of perturbation*. For instance, one assumes that as first approximation
y can be expressed by means of its fundamental term only, i.e., y = a] sin ot +
bj cos wt. Consequently, Eq. (27) reduces to

d P
ax 'hy'fll sinwt+-21 cos wt

dt
where
1 R
fll-; {nf ay sinm‘b-*hl cos wt, t] sin wt dwt
1 n
f21-; {nf a) sin wt + by cos t, t] cos at dat

Letting now y = Re Y, vhere Y = (bl + ;)a,l) Jot o 2 e L ajk(ejm', one

can write equivalently
f20 + 3y

-.I —- jwt- I
LJ-D -1’_1] Y= (fy ¢ jfll) . —Te T

i.e.,

t;)moh]f - N[Z] Y (28)

If the nonlinear term f(y,t) contains also derivatives, the resultant ex-
pression N will be a function of A and jw, i.e., N(A, jw).

The term N{A, jw) is called describing function of the nonlinear ex-
pression f(y,t); it is seen that it is a function of the complex amplitude
X « 203 and of the frequency w. If f(y,t} is linear in y, the corresponding
describing function becomes the transfer function. In general, we hava

£(y,t) - Re N(X, jo) ¥ = pé(y,t) (29)
or identically

£(y,t) - [N(K, Jo) T + N(AY o) ?’] = ué(y,t)

* B. V. Bulgakov - Periodic processes in fres pseudo-linear oscillatory sys-

tems, Jour. Franklin Inst., Vol. 235, June 1943, p. 591-616.

E. C. Johnson - Sinmuzoidal snalysis of feedbsck cuntrol systems containing
nonlinear elements. Trans. ATIEE, July 1952.
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The present procedure of approximate solution is valld whean in (22) ona can
consider wb(y,t) very small and neglect it in first approximation. Then the
amplituds AeJ¥ is determined graphically or analytically solving

jo-h = N(&, j=).

A better spproximation to the actual solution can be obtained when the differ-

ence (29) is small with respect to the other terms in the differential equa-
tion, by writing

% - hy - Re N(A, Jo) Y = ud(y,t) (30)

In this relation u is a coefficient indicative of smallness. Now following a
perturbation method we imagine to expand the true solution y into a power
series in u, i.e.,
2
nr'-yo+uy1"‘;-l Top * one

The first approximation is obtained as indicated beforehand letting u = O.
To obtain the second approximation, one differentiates Eq. (30) with respect
to p and then lets p = 0. There follows

dyy = -
;— = hyl - Re N(4, jo) Yl - d’(yo) (31)
Expanding Q(yo) in Fourier series one has
<+
G(y ) = -é ; ® .jna)t 1
-
where f\
i | -3jnut
= f #(y) % qut L
n =N o
There follows for the second member of (31) ’12‘
i
dyy - - +m a
—= - hy; - Re N(A,jw)Yl =1ls,1 E p Jnet N
dt 2 0 2<-®n i
ngO,+ 1 A

—t

Now the condition of periodicity requires that $; = $_; = O. This condition
is already verified, however, on account of (29). Therefore, the term of

sacond approximaticn is obtainsd as
@® o~ l—oo Jnet
3 = nwt -Jnc
L_Ylnc v 2 E Y2ne
n=2 n=—

o oo
Jw\l

- B e
Y1 ReAle +

SIS

e e e,
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I\ 2ontains a new arbitrary constant A which must be determined on the basis
of the initial condition;, as indicated previously.

IV. Iinear Uifrerential Equations with Variable Coefficients

The methods of solution described fcor nonlinear equations can be
used also in the case of linear equations. However, in the latter case, since
superposition applies, it is possible to make recourse to special methods of
analysis, based on the use of the Green's function and of linear transforms.
For greater gensrality we shall consider a linear differential equation of
order n of type

(308 + oo v 0P+ a(0)] 0 <[ Bal0B™ + e e p0)] w) (32)

which we can indicate for brevity with
L(p,t) y(t) = k(p,yt) u(t) = r(t) (33)

where u(t), r(t) are known functions (driving terms). In general, we also have
a set of n linearly independent relations in y(t) which represent the boundary

conditions. The system
L(pst) ¥y = r(t) 5
us(t) =7 1=1.2...n

might not possess a solution not identically zero which together with its n<l
derivatives is continuous throughout the interval (a,b) of the independent
variaeble, However; one can always find a function whica formally satisfies

the system (34) but violates at least in part the condition of continuity. Tn
particular when r(t) = O, ¥5 = O (homogenersus system), such a solution is
called Green's function G(t, ?). Such a function is continuous and possesses
continuous derivatives of orders up to and including n-2 when a=t2b; in addi-
tion, it is such that its derivative of order n-1 is discontinuous at a point
Vwithin (a,b), and presents there a jump upward 1/a,(7); finally, it satisfies
the given system at all points of {a,b) except at t = 7.

If G(t,7) is a solution of

L(p,t) y=0

ui(y) -0 1=1...n (35)
then an explicit solution of the nonhomogeneous system

L(pst) ¥ = r(t)

uy(y) = 0 i=1...n (36)

T

L T
e sil
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is
¥t) = /°0(6,0) r(@) 4% (37)
a

Ths solution of the more gineral nonhomogeneous system (34) is

b
y(t) = /a G(1,T)r(T)aT+ ¥ o'(+) el * Xnon(t) (38)

vwhere Gi(t) are the unigus solutions of the system
L(Gi) =0
(39)
U, (Gy) = 0

Ui(Gi) - l 3 £ l °0 i“l,i”l eell

When the equations of the boundary conditions Uj(y) = 31 are expressed in
disgonal form

(o) = v, v=0 .. n-1

the latter procedure provides as functions Gi(t) the solutions of

L(p,t)y = )},,(O)yi_l * oo an°i+1(0)y°] 5 "L(e) (40)

Therefore, in this case, the final solution (38) may be considered as corres-
ponding to a system

L(pst)y = r(4) + an(o)yos Ty e )'a,,(o)yl sa g (o)yo] Jo )

r

+ eeo + [an(o)yrb__1 + coe + al(o)yo:i.)(f)
(L)
Ui(y) =0 i=1. ..n

In general, the rigorous solution of & variable linear system is not known.
Approximate expressions for it can be obtained by application of methods of
iteration or perturbation. For instance; writing the system (34) as

L1(pst)y = Ly(pst)y + r(t)
Ui(y) e vi(Y) + \(i (42)
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where parts of a differential expression and of the boundary conditions have
been transferred to the right hand side of the equatione, one can determine
uniquaely a sequence of functions

¥ (t)s ¥9(t) wee y (%) ...

where yo(t) is such that Lz(yo) is continuous irn (a,b) and vi(yo) are finite,
and y‘(t),..oyn(t) satisfy the recurrence relations

Ly (5.) = Ly(%,9) + 7(b)

Up(yp) = V() * % 421 i et
One should observe the relative arbitrariness of choice of yo(t). Another
iteration method* consists in feplacing the variable coefficients in L{p,t)
with their mean values in the range (a,b) of the independent variable. Eg. (33)
is then written -

L(p)y = k(p,t)u(t) + aL(p,t) ¥

where

- o _
L(p) = & p + ..+ a

8L(p) = [G-a ()] 7+ oo s [;o-ao( q]
Starting with yb(t) equal to the solution of

L(p).y(t) = k(p,t) . u(t)
one institutes recurrence relations of type (L42) for the Eq. (L3).

The investigations of variahble linear differential squations can
also be carried out in the complex frequency domains. However, direct trans-
formation of (32) leads, in general, to another variabls linear differential
equation in which order in p and degree in s are interchanged with respect to
Eq. (32). For this reason, in general, the new differential equation is not
easier to integrate than the original one. However, one can find the Oreen's
function of (32) or more generally the impuleive solution of (32) W(t,T) when
u(t) = §(t) and transform it into the complex domain by means of

H(s,t) = _/c;t‘\'(t,'l') (Mg 7

* s, A. Schellanoff, M. C. Gray - B.S.T.J., Vol. 27, April 1948, p. 350-36kL.
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It may be shown® that ths general solution of the systems (36) can be expressed
by mean=z of

c+joo
y(t) = =L ya H(s,t).U(s) ¢Vis
2nj c~Jjoo

where the product H(s,t).U(s) should be considered as the frequency domain
operation correspording to the time domain integration

@
H{s,t) = / wW(t,T) U(?) 47
o]

which is the analogous of (37).

Recapitulating, the procedure of solution of Eq. (32) in the time
domain consists of finding the Green‘s function G(t,%) [or more generally, the
impulsive response W(t;T)] and then finding the total solution y(t) by applica-
tion of the superposition integral in one of the forms (37) or (38). 1In the
frequency domain, on the contrary, one finds the corresponding transform H(s,t)
of the Green’s function (or of the impulsive response) and then obtains the
transform of the total solution y(t) by multiplication of the transforms
H(syt) and U(s). In the latter process one uses standard Laplace transform
tables, considering t in H(s,t) as a constant parameter. It is also possi%le
to extend to the analysis of variable systems many concepts familiar to fixed
systems™™; for instance, for the case of variable networks one can sxtend the

concepts of impedance, admittance, gain, and various theorams of linear fixed
circuit analysis.

In order to find the function H{e,t), which might be considered as
the system function of variable systems, one does not have to find first the
impulsive response, but can solve directly the given differential equation in
the variable H(s,t). For this purpose one applies familiar rules of linear
differential operators, letting in (32) u(t) = e8% and, correspondingly,

y(t) = H(s,t).e5t. It is found

L(pst) . H(s,t) ¥ = k(p,t) ¢°*
and equivalently

L(P"'Ey t‘) o H(s»t) - k(sst) (hh)

Equation (LL), when written out, reads

lT;’. }l(_sjf:)_] pn + eoo ¥ {’M&Q—l p#L(s,t)_l H(S,t) = k(S,t) “45)
[_l—n! Bgn _! i Vs J .J

L. A. Zadeh - Proc. I.R.E., Vol.36, 1950, p. 291.

»

** 5. A. Zadeh - J.A.P., Vol. 21, Nov. 1950, p. 1171.

g V-
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: It should be observed that Eq. {45), in general, is not easier to integrate
¢ than Eq. (32) since one has to use the same methods of iteration or pertur-
bation mentioned previously. For instance, in applying the iteration pro-

cedure.(42) one might choose as starting function y,(t) the function Hy(s,t)
defined as

‘; : i Ho( s’t) - M

x; ; L(s,t)

-

E' : which might be considered as first approximation to H(s,t) when the cosf-

Mc 1 ficients a;(t) of L(p,t) do not vary appreciably over the duration of the im-
: : pulsive response. This methcd corresponds to replacing the differentiel equa-

% tion (LS) with

s n

%" L(s,t) . H(s,t) = K(s,t) = > — ¥ L(S t) pi H(s,t)

£ L

£ =1 It st

£ where all derivative terms have been moved from the left to the right hand

£ side. The recurrence Eqs. (43) are corrsspondingly written

F-. s

=

.
L(s,t) . H.(s,t) = K(s,t) - E % Bt ()
T

V. Some Examples of Application of Methods of Approximate Integration

In order to show the technique of applicetion of mcthods of approxi-
mate integration we shall work out as examples the solution of some differen-
tial equations. For the purpose of checking the order of approximation ob-

tained, we choose first a linear differential equation which can be alsc
golved rigorously.

Specifically, we consider the linear differential equation

j
oo [a+ os(t)]y=1 (L6) y

dt _2

'

where s(t) = sin wt, O<b«<a, Its rigorous solution is known B
and asymptotically (steady state) is given by the particular integral 7
= o -3u/8{t)at /teatojbfs(t)dt a6 '

8

Using the Fourier series expansion

b )
e*J 7 cos wt :E:: (uj)n Jn (g) zjnwt
-5
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one has
t atel 2 cos wt b oat by jnet
at-3l = cos n ..
VA A ™ at = /& Z(-J) J (3) ™ gt
=00 - Q0 - oo

L Therefore, the asymptotic solution of (L6) is written
%= | +00
[ b Jnut

¥ U(1) o pd o COB wt _4\0 b [ 3
¥ 3(2) = J @ _Eoo (=" 9@ 5 (u7)
gr The latter expressicn can be modified if one applies the relation
B b +00
& oot et S m by gmat
s =00 m o
3
‘: There follows that (47) can be written equivalently
E (men)
& — j men)ot
: b b

' E) =2 TR Ry

m n a + jnw

&s This expression can be ordered in the form of an exponential Fourier series
w of type
%
& <2 Jxst

¢ }'(t) = Z Gk [ / (he)
5 =00
ii{ where

3] n =

5 O = =/ y(at) & cat
é‘ n =R

%

L

We have, for instance,

G, -‘L: ; Jw--n 3 (}%) 3 (g) sin(m+n)n

(men)n (a+ jnw)

s o B

Since in thls expression

[

(%}
sin(mfrn)n_i iF e

1

S

S M

£ (m+n)n wi@
there follows that m = -n and
— 2 ,b 1l
G = D L@ - (19)
=00 a+ jnw

T -

= S

2 X - .
it s il e e T
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To derive this formula we have used tha velations

PR LA R N N

Equation (49) can also be written

21 2 2a
%% 3 *g ‘o T, 7T

On the other hand, more gsnerally we have

3, = L/ sty g, o D [ a2 J

@ “n

(b) sin(m¢n-k)n

@

2% ~n I (a+ jnw)n(men=k)
Sirce
0 0
sin(mén-k)n _ i1f menek #
(men=k)n 1 S
there follows m+n = +k and
+00
k=2n b b 1
G, =S den(2) I (2)
k 4-00 ken‘ew’ “n:w a+ jne
In particular o0 .
G, = J JoJl + ] J -Jl.n(a-Jm)*JPn
1 a 1 n ‘2 . co2 :2

In the cosfficients of the series (48), there appear Bessel functinns of first
kind, of srgument ¢ = b/w where b/w <<1, As a first approximation one can rs-
place them with the limit value

J (Y=l , J (,)_,,3_
! : n*)y’ ¢ o5

We shall now derive the approximate solutions of equation (L46) obtained by
application of methods of iteration and of perturbatlion.

T s B AR et =
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Method of Iteraticn. We write Bg. (45) as follows

yie) ay(t) = 1 ~ jb s(t) y(t) {50)
dt

Operating the change oi variable bt = 7, there follows
4. .4 dv 4

dt dy dt d¥
and Eq. (50) beccmes

b y(?) + ay(?) =1 - i s@®) y{D
aT

i.e.,
d

— T P

k' = y - L sy
d% b b

By assumption |s(t)|=1 and we assume that for our purposes the term s{ij.y
can be considered small. lLetting

Y(.t) - yo(t) + yl(t) + yz(t) + .o ¢ yn(t) * 4o

where yn(t) is of order of |s(t)|®, substituting into Eq. (50) and equating
terms of the same order, we have the system of linear differential equations

Yo * -E Yo = % (51)
R I R (52)
§2 \d ':' Y = -3 8(®) b4t (53)

From Bq. (51) the steady state aolution is
y () = &
b
There follows from (52)
§1+§y1 - - -’-%2—
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l.e., _8& 5
e D &z
78 = 3 E——/eb ) a¥ (5L)

Substituting (Sk) into Eq. (53), we have
-2y EL

b
Yo+ g¥p = -8(t) &2/ e P 5?) a¥

There follows
= By a?

*

/.8 Se P s(2) 4T a¥

yz(t) == o

etc, For instance, if s(t) = sin wt = sin%’ 7, we have

T  a.

/55 sing,z,d,t__:)asi.nw;-mzcoamt
B g(a + @)

]
b

oI

yi(t) = =]

There foilows to the firzt approximation

y(t),:y"y_l_:’bsina!t* w b cos wt
° i aEOmz b(b‘+w2)
2
=b & b cos 2ut + 2ub gin 2wt
7o(t) = Tt T o7 3 &
2a(a + «) 2a0a° + &) (a¢ + La°)

wo( ab sin 2wt - 2wb cos 2wt)
2&(;2 + u;)zb)(a2 + hma‘)

/

Therefore, tre second iteraticn brings a contribution to the dc term and, in
addition, terms of second harmonic.

Method of Perturbation. In order to apply the perturbation method in Eq. (L6),
we multiply the perturbation term -jbs(t) y(t) by u,where u is a parametar
indicative of the order of magnitude of the perturbation term. At the and of
our computations we shall replace it with one.

In thie analysis no study is made of the convergence of the series
obtained as a solution. Following the usual procedure, it ie assumed that,
even if the series obtained are nct convergent, the first terms give a result
close enough to the desired correct solution.
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Now we expand y(t) into a pcwer seriss in terms of u

@© n
wt) = > y (t) &
) n!

Repiacing this series into Eq. (46), we have

n , n 00
S L@t By () = 2 - uslt) 2 ¥ () (55)
l ce e (% o 115 - n!

Now letting 1 = O, we have the equation of the zero approximetion

AORE AR (56)

b

Differentiating Eq. (55) once and then letting p = O, we have the equation of
the first approximation

¥, (%) + AEEER R AL (57)

Similarly, differentiating twice Eq. (55) and tihen letting p = O we have the
differential equation of the second approximation

V2417 - =320 5@ (58)

It should be obssrved that Eqs. (56), (57), and (58) are similar to Eqs. (51),

(52), and (53) of the iteration mesthod., The same sclutiicns apply in this case
also.

Other Methods of Iteration. The given differential Eq. (L6) may be written
In the form

p 1 1 !
y{t) = ———— = ——— y (V)
a+jbs(t) a+3bs(t)
and solved by iterstion assuming
1 1 2
- - y-
D aeibs(t) a+Jos(t) °°L
As solution ¥, One assumes
- 1
° a+jbs(t)

L. 'J:J“W””w

.
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Then thsre follows

yy(t) =« —2 , _Jott)
1 a+jbs(t) [a+3bs(t)]3

and

Yplt) = —E—— & __gbst(t) 3% s13(t) + blaegba(t)]E"r (L)

! s Jbs(t) [a+ sba(t)]3 [a + sbs(2)]®
& For instance if s(t) = sin wt, we have
¥
: yz(t) - 1 . Jb w cos wt =
a+jb sin wt (a¢jb sin wt)3
1 _ 3u°bPcos?ut = jb(a+db sin wt)w’sin wt

(a + jb sin wt)s

Another procedure of approximate solution is obtained by writing the d&i fferen-
tial equation in integral form

y(t) = t -/t(a + jbs(t) y(t) at
)

Successive solutions are obtained by iteration writing

to ort ovmeems

y = t- {"[A o Pos(t)] y__ () at

There follows

Vs = ©

t
- ot=/ [a + jbs(t)] t at

P
k
E
%i:

Yo = t- ,/t [a + jbs(t)]{t2 - /t [a+ Jos(t)] ¢ dt} dt
o] o
For example, when s(t) = sin wt one has

-
1

y(t) =t =/ (a+ 3bsin wt) t-at.-;:%(sin ot - ot cos wt) > dt

n A ©

i

e O

T, s
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PR G R

-;:.‘crhir_'

o q —ty
s s LT -—-y..;_;___)———-z—-.,_,



K R Giaaig o oAl

¢!

s

T U BE1YE 100 o IMAPEOY e

AR

R-340-53, PIB-275 3

.t-.z_(a-az)+j§(1-coswb)-j%(coawta»wtsin@-l)

-jp-z-(sinwt-wtcosmt)+j%(ainwt-mtcoswt)#
o

(/)
b2 in 2 why b
2“)2 2 ho

Another example is provided by the differential equation

g+a(y¢by3) = A cos wt
dt

which describes the behavior of a circuit consisting of a nonlinear resistance
in series with a linear inductance. If b<<l, one can proceed by iteration
considering y as the 1limit of a succession and letting

dyn 3
= @y A cos ot = a):u,r“_»:L
dt

If y(o) = O, one has

A
yo- E (4 + —2—2-008 (a)t-‘()
a a +w

whers tan¥ = 2
a

; C = Y T cos @

Similarly, ¥y is the solution of the differential equation

dy.

1 C -at A

— + 8y, ~Acoswt = abd -2 0—7008(0*'-‘()
dt b a alew

ete.

A different procedure for the solution of the given differential
equation consists in transforming it first into the integral equation.
A

t
y = 2etnat-a/ (3 ) at
@ o

This equation can be solved by iteration letting

B e

e
R SRtk SRR

= BB

P— X
ot =
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o

t 3
Y. = —sinot-a/ (y + by ,7) dt
o n=1 =1

€

one has, with the initial condition y(o) = O:

Yo ™ A sin wt
I
A tf _a A3 L3
y; = —sinawt - a S| = 8in ot + b(=) sin” wt| dt =
« fo) ® w
- A sin ot - 2% {1 = cos wt) -
@ N
3
=52 (é) 2 (1 - cos wt) - & (1 - cos 3 at)
4 o B 30

etc.

Vi. Difference Equatioris and Methods of Numerical Integration

Difference Equations

Difference equations have particular importance for nonlinear analy-
gis because they are used in numerical methods and in some analytical pro-
cedures of approximate integration; in addition, they are also used in de-
scribing the behavior of on-off automatic control systems, We shall limit
ourselves here only to the treatment of linaar difference sguations.

While in differential calcuius, which deals with quartities varying
continuously in a certain range, ons defines the differential operator
D = d/dt and the successive operators D2, ... D?, .. in the calculus of finite
ifferences, which deals with quantities wvarying discontinuously in a certain
range, one defines the diffserence operator

87, = Ype1 = ¥n

and the successive difference operators
2 2 2 2 T r
A Yn .. A le ad A yn ) ecs e A yn .} Yn‘l - A Yn

In terms of A one defines elso the operator E = § + 1, which satisfies the
following operational relations

e magp——

o~
A

e =

= - -y
e B | e



28

-

MBI W SRR

G4t FEMCEAN TR

R THERINE

1»i1n

TN,

B¢

hd

A TMTT AT Y

.

. W i :?."g'.

U
.-G

R-340-.53, PIB-275 33

-1 2
E yn yn*l’ E yn*l T T eee E £ yn’l = Yn¢2, etc.

Linear analytical relationships among variables of two corresponding sequences

are expressed in form of difference sqiations of type

o)y, = PV, (59)
where P(A). Q(4) are polynomials in A of type

nOl‘ 200 ‘b

Wa) = by a" + b A .

P(a) = a, Am + 2 Am°1 AETTIR R W

and v represents a sequence of known values. The geusral solution of equation

(59) can be expressed as sum of the solution of the homogensous equation ob-
tained from (59) by letting P(A) = O, and a particular solution of (59). The
soluticn of a homogeneous difference equation of tyye

(by 87+ by o™ 1 e Lo d) 5y = 0 (60)
has the form
r T.n
Vo= 2 A et (61)

i=1
where the valves of ¥i are the roots of the transcendental ejuation obtained

introducing (61) into (60). One can also express Eq. (60) hy means of the
operator E and obtain a relaticnship of type

b - 0 (62)

r Yner ¥ br-»l yn&rol i T bo In

The solution of the latter equation has the form

r

a— n
Ip ™ ; A Sy

=i

where gj are the rcots of the amxiliary equation

r . -
brg ’ LN N + oo 0

Because Eq. (59) has been assumed to be linear, the principle of superposition

applies. Accordingly, it is possible to express its solution by means of an

integral expression similar to the integral of Duhamel. For this purpose, one

defines the unit s‘ap sequence u, as

R
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L 0 forn=20

(63)
u - l forn=>20
and ths unit impulse sequence u’n = 4u as
u'_ = 3 =0 forns¢ O
n” %% (64)
u'!1 = 1 n«=0

Then by application of linear superposition, one can express any bounded func-
tion y, in terms of unit step or unit impulse sequence as follows:

n

Yo = Yo Uy * g b Y., . (65)

s
or
n

In " :Z;:y} U her (66)

Sirnce
- -
R = B u, “'nor = E u'n

equations (7) and (8) can be written respsctively

[~ n r
yn- yo*gAyrg ]un-
N Ir'=

-

- vt emEleny, el ] w, = y(E).u, (65")
= -r =5
In = ;i Yo E " u 6 [yb + N E" + ...u] u'n -
=y (B ur (66")

The coefficients of Y(E) and of Y*(E) can be read directly from a graph of the
sequence y, versus time.

If we now indicate with A, and Gy, respectively, the solutions of

Eq. (59) for v, = up and Vn = u'p, the general solution of the same equation,
can be written as follows:

= n
- =r

-
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n
v, - En v ET G, (68)
r-

The functions A, and G, are particuiar integrals of Eq. (59) which can be
written symbolically

A - _l:(_A-l

u
R Y
Gn - P(A) u'n
Xs)
By long division, letting A = E -1, and assuming that m<n, one has:
-1
a (B-1)" + a (E=1)"" + .... ¢+ a
.EA—) = ° 81 L -C°+cl E-10C2 E-2‘ oeve

Wa)  b(E-1)P+ by (BT e b

Therefore, A, and Gp can be evaluatsd and expressed in the forms (65') and
(66'), respectively. From these expressions one obtains the general solution
Yn corresponding to the arbitrary sequency vp. However; the latter can also

be obtained mers directly by letting vp = V{(E).Up or v, = V¥(E).U'y, in Eq. (59).
One has respactively

P(E-1).V(E)
i QE-1) 4
g - P(ED) JYE)
n «(E-1) &

Numerical Integration

One of the simplest methcds of numerical integration is based on
direct use of Taylor's series. Given

y = f{xgy) (69)

with y(xo) = yo one first evaluates from (69} y'(xo). Now Jdifferentiating
Eq. (69) successively one evaluates y'‘, y''', stc., and ccrrespondingly,
V' (x0); ¥''*(x5); etc. There follows, chocsing h small enough, \

2
y(x,) = y(x +h) = y(x )+hy'(x )+ t—:— SARIE 0 LIPPPR
2
y'(x) = yi(x #h) = yi(x )ehytt(x )+ :— Yz ) eee
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Having obtained y(x1) and y*(x;) one evaluates from Eq. (69) similarly y''(x;),
Y''i{x;), etc., and obtains y(xp) = y(x3 + h). The process is repeatec until
the required solution is obtained. A check on the accuracy of the computations
is made by adding separately the tsrms of odd power and those of even power of
e&ch series, Then, if the series corresponds to x = xp, the sum of these two
results gives y(x,,;) and their difference gives y(zn_ls. The latter value
should coincide witﬁ the value previously calculated, &and provides an indica-
tion of ths error and a correction term.

In particular the method cf Euler® as applied w the differential Eq.
(69) consists in using a Taylor expansion limited to the linear term, i.e.,

y(x,) = y(x, ;) + (%) . h

n-l

An improved value of (gf) is found at sach steap by multiplying h by the
n-1l
average of the values of (dy/dx) at the ends of the interval x,_j, X, i.e.,

1| 4 L@y |
2 dx p3 dx ,

A simplified procedure of numerical integration is obtained replacing
dy/dx in Eq. (69) by an approximating polynomial and thsn integrating this over
any desired interval, For this purpose, one uses the formula of Newton

2 3 e
yi= Yt yigue 47n (“2*11)* A77'n (wiazule2u) +
r — Z

(
Ay'

2

n

+ (uh¢6u34llu2¢6u).

where u -(gcxayh, and An are difference operators of order n. Integreting

Eq. (70) over the intervals X ¥ X 4 X q F X, etc., one obtains various

formuias for integrating ahead or for checking and improving previously cal-
culated values. For example, one has

b 4
n+l 1l 4. s 2.1 3 .3 251 3
n
(T1)
< .
1 1 .2 1 .3 19 4

/T oytdx = hy - = Ay - = 8y - a7yt - =2 ATy
. . 5 o a5 no2) no220 I

*

J. B. Scarborough, Numerical Mathematical Analysis, The Jonn Hopkins Press,
1950, p. 23L.
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In ordar to use these formulas one nereds to start the solution; since the
starting values must be very accurate, this part is usually very laborious.
The most common mathod ussd 4o start Wis solution is bssed on the use of
Taylor's series; as already described.

The approximate numerical solution of a differential egquation can

also be cbtained by replacing directly the equation with its equivslent dif-

ference equation. To do this, one obsarves that by application of Taylor's
series for h small encugh
2
yix+h) = l:l+hD+ %-i D2+... J y(x) = thh(x)

s and similsrly in finite differences

yx +h) = h(x ) = Ey(x)) = chny(xn)

There follows 2
E = ¢ < 1m0 B 0%,
2!
and
2 3 :
1 1P 1 N S
D == - =0m(l+s) = =8 -2+ 8 4 .. 72)
= Uns = = Un(1+8) h[ -t (
An approximate representation of Eq. (72) in terms of E™ is
* =1
p Tt 2=F_ (72)

n o p (g7

where Pn(E'l) is a polyncmial of degree n, whose coefficients might be ob-
tained by substitution. For instance, it is found

n'=1 p ¥ 2 L-E_ E”

h oy 4 g2

-2

ne=2 p ¥ 3 LE.2 -

B 1s iEls g

~ 8 1 - En3 o

ne= 3 D o ‘-'1 -:-2 '“3

3h 1 + 3E + 3E + B

- The errors of these expressions depend upon the third, fourth and fourth

difference, respectivcly. Another less accurate representation of D which
is often used is from (1l)
ad

. I}
D Y (7h)
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Given a differential equation

Q(D)y = P(D)v(t)
ne writes

y - ﬂl} ¥(£) = B(D).v(t) (75)
Qo

and replaces the powers of D with the corresponding approximate expressions in

E*D. If the highest order of D is m;, the approximete expression used for D
should be accurete to ths m-th difference.®*

For example, consider the differential equation

(D+1)y = wu(t)

One has
1l 1

y - ——— u(t) E = u

leD 1 .‘Z 1-E e n

h 1,g-1
=1
1+ E

¥ h u

2+ho(2-h)E™T D
This expression can be evaluated by means of continuous division.

The application of the previous methods to differential equaticns of

higher order presents no difficulty since these can be readily %ransformed into
a system of equations of first order.

The solution of difference equation can also be obtained by means of
the so-called relaxetion method.* The difference equation (given or obtained

by transformation from a differential equation) is written preferably in the
form (482), i.e.,

" - ' (62}
br yn"r + br‘=1 yn*rc’l + ocoe * bo yn o . /

This ecuation connects sets cf r consecutive points. We might assums for
examplae, that y rspresenis values of potential in a region with given boun-
daries. To begin with, one sslects a rather wide square net covering the
given region, and whoss intersection points are the values xn. One filis the
entire area with guesssed-at values of y, and as a result the application of
the Eq. (62) now will provide a residual different than zero, i.e.,

o Tner ¥ Ypad Ynepal * cce * B ¥y < R(n) (76)

*

E. Weber, Electromagnetic Filelds, Theory and Applications, J. Wiley, 1950,
p. 260,

&% Milne~Thomson - Calculus of finite differences, London, 1923,

Brown, B.M. -
Math. Gazette 30 (1947), 1LS.
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For the exact solution R(n) should be zerc, and its actual value depends upon
the initial value y, assumed. Any correction at n will affect the residuals
at all its neighbor points as well., It requirss therefore somes little ex-
perience to estimate the corrections needed, and it is genersally preferable

to note next tc ths assumsd values yp the residuals in bracksts. One will use
the distribution of the residuals for the seccnd estimate. It is important to

note that the procedure is definitely a convergent one even if one startis from
a rather crude first guess. Guod results are recorded by Strutt® for electron
tube problems. The rsthod is illustrated in Cosslett™® and Zworkyn, et al#a®
for electron optical problems and in Scuthwell®™H% for the magnetic flux dis-

tribution in a generator; many arplications have been made to elastic and heat
problems.

*

M. J. 0. Strutt, Ann. d. Physik 87, p. 153 (1928). M. J. 0. Strutt,
Moderne Mehrgitter-electroncnrohren, Vol. 2, J. Springer, Berlin, 1938.

v, E. Cossiett, Introduction to Electron Optics, Oxford University Press,
England, 1946.
oy K. Zworkyn, et al, Electron Optics and the Electron Microsceps, J.Wiley
and Sons, 1945,
e

R. V. Southwell, Relaxation Methods in Theoretical Physics, Oxford Univ.
Press, 1946.

———



	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048



